MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection

Hiroki Iwai a, Keiji Funatogawa a, Kazunori Matsumura a, Masako Kato-Miyazawa a, Fumiko Kirikae a, Kotaro Kiga d, Chihiro Sasakawa c, d, e, Tohru Miyoshi-Akiyama a, Teruo Kirikae a, *

Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo 162-8655, Japan
b Tochigi Prefectural Institute of Public Health, Tochigi 329-1196, Japan
c Nippon Institute for Biological Science, Tokyo 198-0024, Japan
d Division of Bacterial Infection, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
e Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan

Article history:Received 1 December 2014  Accepted 15 March 2015

Keywords:Mycobacterium tuberculosis  microRNA  miR-155

MicroRNAs (miRNAs) are short, conserved, non-coding RNA molecules that repress translation, followed by the decay of miRNA-targeted mRNAs that encode molecules involved in cell differentiation, development, immunity and apoptosis. At least six miRNAs, including microRNA-155 (miR-155), were upregulated when born marrow-derived macrophages from C57BL/6 mice were infected with Mycobacterium tuberculosis Erdman. C57BL/6 mice intravenously infected with Erdman showed up-regulation of miR-155 in livers and lungs. Following infection, miR-155-deficient C57BL/6 mice died significantly earlier and had significantly higher numbers of CFU in lungs than wild-type mice. Moreover, fewer CD4 T cells, but higher numbers of monocytes and neutrophils, were present in the lungs of Erdman-infected miR-155 knockout (miR-155−/−) than of wild-type mice. These findings indicated that miR-155 plays a critical role in immune responses to M. tuberculosis.

© 2015 Elsevier Ltd. All rights reserved.

* Corresponding author. Tel.: +81 3 3202 7181; fax: +81 3 3202 7364. Th17 and regulatory T cells [13]. miR-155 regulates a wide spectrum

E-mail address: tkirikae@ri.ncgm.go.jp (T. Kirikae).

http://dx.doi.org/10.1016/j.tube.2015.03.006 1472-9792/ © 2015 Elsevier Ltd. All rights reserved.